Prof. Jiangchuan Liu
IEEE Fellow
Simon Fraser University, Canada
Jiangchuan Liu is a Full Professor in the School of Computing Science, Simon
Fraser University, British Columbia, Canada. He is a Fellow of The Canadian
Academy of Engineering, an IEEE Fellow, and an NSERC E.W.R. Steacie Memorial
Fellow. In the past he worked as an Assistant Professor at The Chinese
University of Hong Kong, a research fellow at Microsoft Research Asia, and an
EMC-Endowed Visiting Chair Professor of Tsinghua University.
He received the BEng degree (cum laude) from Tsinghua University, Beijing,
China, in 1999, and the PhD degree from The Hong Kong University of Science and
Technology in 2003, both in computer science. He is a co-recipient of the
inaugural Test of Time Paper Award of IEEE INFOCOM (2015), ACM SIGMM TOMCCAP
Nicolas D. Georganas Best Paper Award (2013), ACM Multimedia Best Paper Award
(2012), and IEEE MASS Best Paper Award (2021).
His research interests include multimedia systems and networks, cloud and edge
computing, social networking, online gaming, and Internet of
things/RFID/backscatter. He has served on the editorial boards of IEEE/ACM
Transactions on Networking, IEEE Transactions on Network Sciences and
Engineering, IEEE Transactions on Big Data, IEEE Transactions on Multimedia,
IEEE Communications Surveys and Tutorials, and IEEE Internet of Things Journal.
He is a Steering Committee member of IEEE Transactions on Mobile Computing and
Steering Committee Chair of IEEE/ACM IWQoS (2015-2017). He was TPC Co-Chair of
IEEE INFOCOM'2021 and General Co-Chair of INFOCOM’2024.
Prof. Shui Yu
IEEE Fellow
University of Technology Sydney, Australia
Shui Yu (IEEE F’23) obtained his PhD from Deakin University, Australia, in 2004.
He is a Professor of School of Computer Science, Deputy Chair of University
Research Committee, University of Technology Sydney, Australia. His research
interest includes Cybersecurity, Network Science, Big Data, and Mathematical
Modelling. He has published five monographs and edited two books, more than 500
technical papers at different venues, such as IEEE TDSC, TPDS, TC, TIFS, TMC,
TKDE, TETC, ToN, and INFOCOM. His current h-index is 71. Professor Yu promoted
the research field of networking for big data since 2013, and his research
outputs have been widely adopted by industrial systems, such as Amazon cloud
security. He is currently serving the editorial boards of IEEE Communications
Surveys and Tutorials (Area Editor) and IEEE Internet of Things Journal
(Editor). He served as a Distinguished Lecturer of IEEE Communications Society
(2018-2021). He is a Distinguished Visitor of IEEE Computer Society, and an
elected member of Board of Governors of IEEE VTS and ComSoc, respectively. He is
a member of ACM and AAAS, and a Fellow of IEEE.
Prof. Minghua Chen
IEEE Fellow
City University of Hong Kong, Hong Kong, China
Minghua received his B.Eng. and M.S. degrees from the Department of Electronic
Engineering at Tsinghua University. He received his Ph.D. degree from the
Department of Electrical Engineering and Computer Sciences at University of
California Berkeley. He is now a Professor at School of Data Science, City
University of Hong Kong. Minghua received the Eli Jury award from UC Berkeley in
2007 (presented to a graduate student or recent alumnus for outstanding
achievement in the area of Systems, Communications, Control, or Signal
Processing) and The Chinese University of Hong Kong Young Researcher Award in
2013. He also received several best paper awards, including IEEE ICME Best Paper
Award in 2009, IEEE Transactions on Multimedia Prize Paper Award in 2009, ACM
Multimedia Best Paper Award in 2012, and IEEE INFOCOM Best Poster Award in 2021.
He serves as Associate Editor of IEEE/ACM Transactions on Networking in 2014 -
2018. He is currently a Senior Editor for IEEE Systems Journal (2021- present),
an Area Editor of ACM SIGEnergy Energy Informatics Review (2021 - present), and
an Award Chair and Executive Committee member of ACM SIGEnergy (2018 - present).
Minghua’s recent research interests include online optimization and algorithms,
machine learning in power system operation, intelligent transportation systems,
distributed optimization, delay-constrained network coding, and capitalizing the
benefit of data-driven prediction in algorithm/system design. He is an ACM
Distinguished Scientist and an IEEE Fellow.
Prof. Tahar Kechadi
University College Dublin, Ireland
Professor M-Tahar Kechadi obtained PhD and MSc degrees - in Computer Science
from the University of Lille 1, France. He is currently a Professor of Computer
Science at the School of Computer Science, UCD. He is a PI at the Insight Centre
for Data Analytics. He serves on the scientific committees for several
international conferences and organised and hosted one of the leading
conferences in his area. The core and central focus of his research for the last
decade is how to manage and analyse data quickly and efficiently. We live in the
digital world and produce more data than we can analyse and exploit. This “big
data” will continue to grow exponentially, underpin new waves of innovation in
nearly every sector of the world economy, and reshape the framework we build and
use computers (hardware and software). Currently, my research interests are
primarily in
• Big Data Analytics and its applications to real-world applications (Healthcare
and Digital Agriculture).
• Digital Forensics and Cybersecurity.
In big data applications, data analytics and computing environments created new
problems and challenges for efficient execution and optimal system performance.
These brought me to look at the challenges of data analytics in the
heterogeneous, complex, distributed environment. Another key objective is to
design and develop data analytics techniques that delineate a careful division
of work between the user and the computer. One way to tackle this challenge is
to provide constant feedback to the users and engage with them only when
required. And finally, the scalability and privacy issues, as the datasets are
becoming huge, containing data of various types about different systems or
users. I am recently looking at these issues from a cybersecurity and data
privacy point of view.